

Old Spacecraft, New Mission: EPOXI's Approach to the comet Hartley-2

12th International Conference on Space Operations
Stockholm, Sweden

Richard Rieber 12 June 2012

Overview

- Deep Impact Prime Mission and EPOXI Mission of Opportunity
- 2. Encounter Organization
- 3. Constraints
- 4. Approach Phases
 - 1. Early-Approach
 - 2. Mid-Approach
 - 3. Late-Approach
- 5. Key Results
- 6. Conclusion

Deep Impact Prime Mission

Launch: 12 January 2005

Objective: Smash a mini-spacecraft into the comet Tempel-1 and observe

Result:

Data courtesy of NASA, Image courtesy of Gordan Ugarkovic, www.unmannedspaceflight.com

EPOXI Mission of Opportunity

- EPOXI = EPOCh + DIXI
- EPOCh = Extrasolar Planetary Observation and Characterization
 - COMPLETE: Executed January 2008 August 2008
- DIXI = Deep Impact eXtended Investigation
 - COMPLETE: Flyby Comet Hartley-2 on 4 November 2010

Approach & Encounter Overview

Constraints

- No flight software modifications
- Where's Boethin?
 - 2.5x the mission duration for the same budget
- Aging hardware
 - TWTA-A helix current
 - B-side RF power loss & risk to wave-guide transfer switch
- Result: No toggling the waveguide transfer switch
 - Can only switch between HGA and LGA by swapping TWTAs

Telecom Subsystem

Deep Impact Orbital Geometry

Deep Impact Flyby Spacecraft

EPOXI Geometry

Early-Approach – Part 1 E-60d – E-50d

Driven by thermal constraints

- 6-hour cadence
- 6.75-min slews
- 30-min of imaging
- No IR data

Early-Approach – Part 2 E-50d – E-40d

Relaxed thermal environment

- 2-hour cadence
- 10-min slews
- 30-min of imaging
- No IR data

Early-Approach Results

First Interlude E-40d – E-34d

Cold soak to cool down IR detector E-39d – E-36d

Instrument Calibration
 E-35d

• TCM-20 E-34d

Mid-Approach E-34d – E-8d

- Relaxed phase of approach
- 16-hours of imaging
- 30-min slews
- 7-hours at playback attitude
 - Only 5-hours needed for image downlink
- Able to conduct DDORs (advanced ranging)
- Time available for other engineering activities

Second Interlude E-8d – E-8d

• TCM-21

Late-Approach

- 17-hours imaging
- 6.75-minute slews
- 7-hours toggling between comet & playback attitude
 - (Affectionately referred to as the "Do-Si-Do")
 - 1. Slew to playback attitude (6.75-min)
 - 2. Downlink images (30-min)
 - 3. Slew back to imaging attitude (6.75-min)
 - 4. Image (16.5-min)
 - 5. Repeat (x7)
- Challenges
 - DSN lockup every time at playback attitude
 - Only 77-seconds of margin on downlink time out of every 24-hours (0.09% margin)

Late-Approach

TCM-22 at E-2d

- Planned but not believed to be statistically necessary
- Jets changed comet's orbit

Fast Facts

- 59-days of operations
- 27,382 unique MRI images
- 16,487 unique HRI images
- 20,030 unique IR spectra
- 63,899 total unique images or spectra
- Nucleus never spatially resolved during Approach

Conclusion

- Small, skilled team with lots of freedom and plenty of responsibility
- Unencumbered with bureaucracy
- Limited, but sufficient oversight
- EPOXI is an excellent example of spacecraft re-tasking
- Great scientific return on investment for NASA
- Never retire a spacecraft
 - If you can't figure out what to do, ask around for ways to keep operating

Questions?

